A good training set for speech spoofing countermeasures requires diverse TTS and VC spoofing attacks, but generating TTS and VC spoofed trials for a target speaker may be technically demanding. Instead of using full-fledged TTS and VC systems, this study uses neural-network-based vocoders to do copy-synthesis on bona fide utterances. The output data can be used as spoofed data. To make better use of pairs of bona fide and spoofed data, this study introduces a contrastive feature loss that can be plugged into the standard training criterion. On the basis of the bona fide trials from the ASVspoof 2019 logical access training set, this study empirically compared a few training sets created in the proposed manner using a few neural non-autoregressive vocoders. Results on multiple test sets suggest good practices such as fine-tuning neural vocoders using bona fide data from the target domain. The results also demonstrated the effectiveness of the contrastive feature loss. Combining the best practices, the trained CM achieved overall competitive performance. Its EERs on the ASVspoof 2021 hidden subsets also outperformed the top-1 challenge submission.
翻译:用于言语伪证反措施的良好培训套件需要多种TTS和VC假冒数据,但为目标演讲者进行TTS和VC假冒试验在技术上可能要求很高。本研究不是使用成熟的 TTS和VC系统,而是使用基于神经网络的vocoders对善意言词进行复制合成。输出数据可以用作假数据。为了更好地利用善意和假冒数据的对配方,本研究还引入了可纳入标准培训标准的对比特征损失。根据ASVspoof 2019逻辑访问训练集的善意试验,本研究用经验比较了以拟议方式创建的几套培训,使用少数无偏向的神经声音组合进行复制合成。多套测试结果显示了一些良好做法,例如利用目标域的善意数据和假冒数据微调神经电动器。研究结果还展示了对比特征损失的有效性。结合了最佳做法,经过培训的MM在2021号逻辑访问数据集中实现了总体竞争表现。