The advances of modern localization techniques and the wide spread of mobile devices have provided us great opportunities to collect and mine human mobility trajectories. In this work, we focus on passively collected trajectories, which are sequences of time-stamped locations that mobile entities visit. To analyse such trajectories, a crucial part is a measure of similarity between two trajectories. We propose the time-window Frechet distance, which enforces the maximum temporal separation between points of two trajectories that can be paired in the calculation of the Frechet distance, and the metric-based edit distance which incorporates the underlying metric in the computation of the insertion and deletion costs. Using these measures, we can cluster trajectories to infer group motion patterns. We look at the $k$-gather problem which requires each cluster to have at least $k$ trajectories. We prove that k-gather remains NP-hard under edit distance, metric-based edit distance and Jaccard distance. Finally, we improve over previous results on discrete Frechet distance and show that there is no strongly sub-quadratic time with approximation factor less than $1.61$ in two dimensional setting unless SETH fails.
翻译:现代本地化技术的进步和移动装置的广泛分布为我们提供了收集和探测人类移动轨迹的巨大机会。在这项工作中,我们侧重于被动收集的轨迹,这些轨迹是移动实体访问的时间标记地点的序列。分析这种轨迹,一个关键部分是两个轨迹之间的相似度度量。我们提议了时风滑动偏移距离,这种距离在计算Frechet距离时可以对齐的两个轨迹点之间的最大时间间隔间隔,以及在计算插入和删除成本时纳入基本计量的基于标准的编辑距离。我们利用这些措施,可以对集成轨迹来推断群体运动模式。我们审视美元乘积问题,要求每个集体至少有1美元轨迹。我们证明,K-gather在编辑距离、基于计量的编辑距离和Jaccar距离之间仍然很硬。最后,我们改进了在计算插入和删除成本时所用的标准。我们可以用集成的轨迹来组合成轨道,以推导出组合运动模式。我们审视每组体需要至少拥有1美元的轨迹。我们证明,K-gather在编辑距离、基于计量的编辑距离和Jacard距离之间仍然很硬。最后,我们改进了离离离离离的硬的硬的硬度距离,除非2度的距离,并且不甚低度1度度度度度度度度度度度度度度度度度度度度度度度度度度度,除非正平平平平平方平方位方平方平方平方平方平方平方位方位。