Equivariance w.r.t. geometric transformations in neural networks improves data efficiency, parameter efficiency and robustness to out-of-domain perspective shifts. When equivariance is not designed into a neural network, the network can still learn equivariant functions from the data. We quantify this learned equivariance, by proposing an improved measure for equivariance. We find evidence for a correlation between learned translation equivariance and validation accuracy on ImageNet. We therefore investigate what can increase the learned equivariance in neural networks, and find that data augmentation, reduced model capacity and inductive bias in the form of convolutions induce higher learned equivariance in neural networks.
翻译:等变性是指神经网络相对于几何变换的等变性,具有提高数据效率、参数效率以及对视角漂移的鲁棒性的优点。当等变性没有被设计进神经网络时,网络仍然可以通过学习数据来获得等变函数。我们通过提出一种改进的等变性度量来量化这种学得等变性。我们发现学得的平移等变性与ImageNet上的验证准确性存在相关性。因此,我们调查了什么可以增加神经网络中的学得等变性,并发现数据扩增、减少模型容量以及采用卷积的归纳偏见可以引导神经网络具有更高的学得等变性。