Electricity cost is a dominant and rapidly growing expense in data centers. Unfortunately, much of the consumed energy is wasted because servers are idle for extended periods of time. We study a capacity management problem that dynamically right-sizes a data center, matching the number of active servers with the varying demand for computing capacity. We resort to a data-center optimization problem introduced by Lin, Wierman, Andrew and Thereska that, over a time horizon, minimizes a combined objective function consisting of operating cost, modeled by a sequence of convex functions, and server switching cost. All prior work addresses a continuous setting in which the number of active servers, at any time, may take a fractional value. In this paper, we investigate for the first time the discrete data-center optimization problem where the number of active servers, at any time, must be integer valued. Thereby we seek truly feasible solutions. First, we show that the offline problem can be solved in polynomial time. Second, we study the online problem and extend the algorithm {\em Lazy Capacity Provisioning\/} (LCP) by Lin et al. to the discrete setting. We prove that LCP is 3-competitive. Moreover, we show that no deterministic online algorithm can achieve a competitive ratio smaller than~3. In addition, we develop a randomized online algorithm that is 2-competitive against an oblivious adversary. Moreover, we prove that 2 is a lower bound for the competitive ratio of randomized online algorithms, so our algorithm is optimal. Finally, we address the continuous setting and give a lower bound of~2 on the best competitiveness of online algorithms. This matches an upper bound by Bansal et al. We prove that all lower bounds still hold in a problem variant with more restricted operating cost functions, introduced by Lin et al.


翻译:电力成本是数据中心中占主导地位且快速增长的成本。 不幸的是, 消耗的能源大部分被浪费了, 因为服务器长时间闲置。 我们研究的是动态右缩缩数据中心的能力管理问题, 将运行中的服务器数量与不同的计算能力需求相匹配。 我们采用Lin、 Wieerman、 Andrew 和 Thereska 引入的数据中心优化问题, 在一个时间范围内, 将运行成本的合并目标功能最小化, 由一系列 convex 函数和服务器转换成本为模型。 之前的所有工作都针对一个连续设置, 即运行中的服务器数量, 任何时候都可能具有分数值。 我们研究一个动态的数据中心管理问题, 将运行中的服务器数量与对计算能力的需求相匹配。 我们第一次调查的是运行中的离散数据中心优化问题, 在任何时候, 都必须对运行中的服务器数量进行整整齐评估。 首先, 我们通过引入一个超时空的运行问题, 继续引入一个直线问题。 其次, 我们研究在线的算算法, 降低 和 LCP (LCP ) 的计算方法可以产生一个分数值, 。 在不固定的网络上运行中, 的运行中, 最低的运行中, 最终显示, 我们的运行中, 将一个持续的 将一个不固定的算法, 将我们更低的算法变。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月29日
Arxiv
0+阅读 · 2021年9月28日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员