We present efficient algorithms to decide whether two given counting functions on non-abelian free groups or monoids are at bounded distance from each other and to decide whether two given counting quasimorphisms on non-abelian free groups are cohomologous. We work in the multi-tape Turing machine model with non-constant time arithmetic operations. In the case of integer coefficients we construct an algorithm of linear space and time complexity (assuming that the rank is at least $3$ in the monoid case). In the case of rational coefficients we prove that the time complexity is $O(N\log N)$, where $N$ denotes the size of the input, i.e. it is as fast as addition of rational numbers (implemented using the Harvey--van der Hoeven algorithm for integer multiplication). These algorithms are based on our previous work which characterizes bounded counting functions.
翻译:我们提出高效的算法,以决定两个给定的计算功能是否相互连接,两个给定的计算功能是否相互连接,以及决定两个给定的计算非给定的自由团体的准形态是否具有共通性。我们在多盘图灵机模型中工作,使用不连续的时间算术操作。在整数系数中,我们构建了线性空间和时间复杂性的算法(假设单数中排名至少为3美元)。在合理系数中,我们证明时间复杂性为$O(N/log N),其中美元表示输入的大小,也就是说,它与增加合理数字(使用Harvey-van der Hoeven算法进行整数倍倍增)一样快。这些算法是基于我们以前对受约束的计数功能所作的定性工作。