As organizations struggle with processing vast amounts of information, outsourcing sensitive data to third parties becomes a necessity. To protect the data, various cryptographic techniques are used in outsourced database systems to ensure data privacy, while allowing efficient querying. A rich collection of attacks on such systems has emerged. Even with strong cryptography, just communication volume or access pattern is enough for an adversary to succeed. In this work we present a model for differentially private outsourced database system and a concrete construction, $\mathcal{E}\text{psolute}$, that provably conceals the aforementioned leakages, while remaining efficient and scalable. In our solution, differential privacy is preserved at the record level even against an untrusted server that controls data and queries. $\mathcal{E}\text{psolute}$ combines Oblivious RAM and differentially private sanitizers to create a generic and efficient construction. We go further and present a set of improvements to bring the solution to efficiency and practicality necessary for real-world adoption. We describe the way to parallelize the operations, minimize the amount of noise, and reduce the number of network requests, while preserving the privacy guarantees. We have run an extensive set of experiments, dozens of servers processing up to 10 million records, and compiled a detailed result analysis proving the efficiency and scalability of our solution. While providing strong security and privacy guarantees we are less than an order of magnitude slower than range query execution of a non-secure plain-text optimized RDBMS like MySQL and PostgreSQL.


翻译:随着各组织努力处理大量信息,有必要将敏感数据外包给第三方。为了保护数据,在外包数据库系统中使用各种加密技术,以确保数据隐私,同时允许高效查询。出现了大量攻击这类系统的情况。即使有了强大的加密,光是通信量或访问模式就足以使对手成功。在这项工作中,我们提出了一个不同私营外包数据库系统和具体建设的模式,即$\mathcal{E{text{polute},这可以明显地掩盖上述渗漏,同时保持效率和可扩展性。在我们的解决办法中,不同隐私被保存在记录水平上,甚至针对一个控制数据和查询的不受信任的服务器。$\mathcal{E_text{polut}美元就足以使敌人能够成功。我们提出了一套改进模式,以提高效率和实用性为目的采用现实世界所必要的解决方案。我们描述了如何同步操作,尽量减少噪音的数量,并降低了控制数据和查询数据和查询的保密性服务器的保密性水平。我们提出了一个比10万种安全性水平的精确度的测试,同时,我们提出了一个安全性分析的准确性分析的顺序和精确性分析范围要低于10万种。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
20+阅读 · 2020年12月9日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【斯坦福大学Chelsea Finn-NeurIPS 2019】贝叶斯元学习
专知会员服务
38+阅读 · 2019年12月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Network Generation with Differential Privacy
Arxiv
0+阅读 · 2021年11月17日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关VIP内容
专知会员服务
20+阅读 · 2020年12月9日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【斯坦福大学Chelsea Finn-NeurIPS 2019】贝叶斯元学习
专知会员服务
38+阅读 · 2019年12月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Top
微信扫码咨询专知VIP会员