In this paper, we consider a class of possibly nonconvex, nonsmooth and non-Lipschitz optimization problems arising in many contemporary applications such as machine learning, variable selection and image processing. To solve this class of problems, we propose a proximal gradient method with extrapolation and line search (PGels). This method is developed based on a special potential function and successfully incorporates both extrapolation and non-monotone line search, which are two simple and efficient accelerating techniques for the proximal gradient method. Thanks to the line search, this method allows more flexibilities in choosing the extrapolation parameters and updates them adaptively at each iteration if a certain line search criterion is not satisfied. Moreover, with proper choices of parameters, our PGels reduces to many existing algorithms. We also show that, under some mild conditions, our line search criterion is well defined and any cluster point of the sequence generated by PGels is a stationary point of our problem. In addition, by assuming the Kurdyka-${\L}$ojasiewicz exponent of the objective in our problem, we further analyze the local convergence rate of two special cases of PGels, including the widely used non-monotone proximal gradient method as one case. Finally, we conduct some numerical experiments for solving the $\ell_1$ regularized logistic regression problem and the $\ell_{1\text{-}2}$ regularized least squares problem. Our numerical results illustrate the efficiency of PGels and show the potential advantage of combining two accelerating techniques.
翻译:在本文中, 我们考虑一个在当代许多应用中出现的可能非convex、 非mooth 和非Lipschitz 优化问题的类别, 如机器学习、 变量选择和图像处理等 。 为了解决这一类问题, 我们建议了一种使用外推和线搜索( PGels ) 的近似梯度梯度方法。 这个方法基于一种特殊的潜在功能, 并成功地结合了外推和不单调线搜索, 它们是近似梯度方法的两种简单而有效的加速技术。 由于线搜索, 这个方法允许在选择外推参数时有更大的灵活性, 并在不满足某种线搜索标准的情况下, 适应这些参数 。 此外, 如果选择适当的参数, 我们的 PGels 将降低到许多现有的算法 。 我们还表明, 在某种温和的条件下, 我们的线搜索标准搜索标准以及 PGels 生成的序列中的任何组点点是我们问题的固定点点点点点点点。 此外, 通过假设 Kurdyka- $ 递增 和 递增 预示我们问题目标目标 中最难解的递增 的递归值 的递增率 率, 我们进一步分析 的本地的递增率, 我们所使用的两个特殊的递增率 的递增率, 的递增率, 我们使用两种方法, 我们使用的一个特殊的递增法的递增率 例 的 例 的 例 的递增率 。