Multi-agent reinforcement learning (MARL) has achieved remarkable success in various challenging problems. Meanwhile, more and more benchmarks have emerged and provided some standards to evaluate the algorithms in different fields. On the one hand, the virtual MARL environments lack knowledge of real-world tasks and actuator abilities, and on the other hand, the current task-specified multi-robot platform has poor support for the generality of multi-agent reinforcement learning algorithms and lacks support for transferring from simulation to the real environment. Bridging the gap between the virtual MARL environments and the real multi-robot platform becomes the key to promoting the practicability of MARL algorithms. This paper proposes a novel MARL environment for real multi-robot tasks named NeuronsMAE (Neurons Multi-Agent Environment). This environment supports cooperative and competitive multi-robot tasks and is configured with rich parameter interfaces to study the multi-agent policy transfer from simulation to reality. With this platform, we evaluate various popular MARL algorithms and build a new MARL benchmark for multi-robot tasks. We hope that this platform will facilitate the research and application of MARL algorithms for real robot tasks. Information about the benchmark and the open-source code will be released.
翻译:多智能体强化学习(MARL)在各种具有挑战性的问题上已经取得了显著的成功。与此同时,越来越多的基准已经出现,并提供了一些标准来评估不同领域的算法。一方面,虚拟MARL环境缺乏对真实世界任务和执行器能力的了解,另一方面,目前的任务指定的多机器人平台对多智能体强化学习算法的一般性支持不足,缺乏从模拟到真实环境的转移支持。弥合虚拟MARL环境与真实多机器人平台之间的差距成为促进MARL算法实用性的关键。本文提出了一种用于实际多机器人任务的新型MARL环境NeuronsMAE(Neurons Multi-Agent Environment)。此环境支持协作和竞争多机器人任务,并配置有丰富的参数接口以研究从模拟到现实的多智能体策略转移。通过这个平台,我们评估了各种流行的MARL算法,并建立了一个新的多机器人任务的MARL基准。我们希望这个平台能促进MARL算法在实际机器人任务中的研究和应用。基准的信息和开源代码将会发布。