In this paper, we use a linear birth and death process with immigration to model infectious disease propagation when contamination stems from both person-to-person contact and the environment. Our aim is to estimate the parameters of the process. The main originality and difficulty comes from the observation framework. Indeed, counts of infected population are hidden. The only data available are periodic cumulated new infected counts. We first derive an analytic expression of the unknown parameters as functions of well-chosen discrete time transition probabilities. Second, we extend and adapt the standard Baum-Welch algorithm in order to estimate the said discrete time transition probabilities in our hidden data framework. The performance of our estimators is illustrated both on synthetic data and real data of typhoid fever in Mayotte.
翻译:在本文中,我们使用直线出生和死亡过程,通过移民,在污染既源于人与人接触,又源于环境的情况下,模拟传染病的传播。我们的目标是估计过程的参数。主要的原始性和困难来自观察框架。事实上,受感染人口的数量是隐藏的。唯一的现有数据是定期累积的新感染人数。我们首先分析各种未知参数的表达方式,作为精心选择的离散时间过渡概率的函数。第二,我们扩展和调整标准的 Baum-Welch 算法,以便估计我们隐藏数据框架中所说的离散时间过渡概率。我们的估计员的表现在马约特岛的合成数据和伤寒的真实数据上都作了说明。</s>