Deep learning-based object detection has demonstrated a significant presence in the practical applications of artificial intelligence. However, objects such as fire and smoke, pose challenges to object detection because of their non-solid and various shapes, and consequently difficult to truly meet requirements in practical fire prevention and control. In this paper, we propose that the distinctive fractal feature of self-similar in fire and smoke can relieve us from struggling with their various shapes. To our best knowledge, we are the first to discuss this problem. In order to evaluate the self-similarity of the fire and smoke and improve the precision of object detection, we design a semi-supervised method that use Hausdorff distance to describe the resemblance between instances. Besides, based on the concept of self-similar, we have devised a novel methodology for evaluating this particular task in a more equitable manner. We have meticulously designed our network architecture based on well-established and representative baseline networks such as YOLO and Faster R-CNN. Our experiments have been conducted on publicly available fire and smoke detection datasets, which we have thoroughly verified to ensure the validity of our approach. As a result, we have observed significant improvements in the detection accuracy.
翻译:暂无翻译