Humans are able to learn to recognize new objects even from a few examples. In contrast, training deep-learning-based object detectors requires huge amounts of annotated data. To avoid the need to acquire and annotate these huge amounts of data, few-shot object detection aims to learn from few object instances of new categories in the target domain. In this survey, we provide an overview of the state of the art in few-shot object detection. We categorize approaches according to their training scheme and architectural layout. For each type of approaches, we describe the general realization as well as concepts to improve the performance on novel categories. Whenever appropriate, we give short takeaways regarding these concepts in order to highlight the best ideas. Eventually, we introduce commonly used datasets and their evaluation protocols and analyze reported benchmark results. As a result, we emphasize common challenges in evaluation and identify the most promising current trends in this emerging field of few-shot object detection.
翻译:人类即使从几个例子中也能学会识别新的物体。 相比之下,培训深学习天体探测器需要大量附加说明的数据。 为了避免获取和批注这些数量庞大的数据,少发的天体探测旨在从目标领域新类别中为数不多的物体中学习。 在本次调查中,我们提供了一小片天体探测的最新状态概览。 我们根据它们的培训计划和建筑布局对各种方法进行分类。 对于每一种方法,我们描述一般的实现情况以及改进新类型物体性能的概念。 我们酌情对这些概念进行简短的介绍,以突出最佳想法。 最后,我们引入了常用的数据集及其评价程序,并分析了所报告的基准结果。结果,我们强调评价方面的共同挑战,并确定了这个新兴领域最有希望的趋势,即微发天体物体探测。