Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo method that allows to sample high dimensional probability measures. It relies on the integration of the Hamiltonian dynamics to propose a move which is then accepted or rejected thanks to a Metropolis procedure. Unbiased sampling is guaranteed by the preservation by the numerical integrators of two key properties of the Hamiltonian dynamics: volume-preservation and reversibility up to momentum reversal. For separable Hamiltonian functions, some standard explicit numerical schemes, such as the St\"ormer--Verlet integrator, satisfy these properties. However, for numerical or physical reasons, one may consider a Hamiltonian function which is nonseparable, in which case the standard numerical schemes which preserve the volume and satisfy reversibility up to momentum reversal are implicit. Actually, when implemented in practice, such implicit schemes may admit many solutions or none, especially when the timestep is too large. We show here how to enforce the numerical reversibility, and thus unbiasedness, of HMC schemes in this context. Numerical results illustrate the relevance of this correction on simple problems.


翻译:哈密顿蒙特卡罗(HMC)是一种马尔可夫链蒙特卡罗方法,可用于采样高维概率测度。它依赖于对哈密顿动力学的积分,以提出移动,然后通过Metropolis程序接受或拒绝。通过数值积分器保持哈密顿动力学的两个关键属性:体积保持和动量反转的可逆性,可以确保无偏见的采样。对于可分离的哈密顿函数,一些标准的显式数值方案,如St\"ormer-Verlet积分器,满足这些属性。然而,由于数值或物理原因,人们可能考虑哈密顿函数是不可分离的情况,这种情况下保持体积并满足动量反转的标准数值方案是隐式的。实际上,在实践中实现这样的隐式方案可能会导致许多或无解,尤其是当时间步骤过大时。我们在此展示如何在这种情况下实现数值上的可逆性,从而确保无偏的HMC方案。数值结果说明了这种修正在简单问题上的相关性。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
100+阅读 · 2023年5月10日
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
68+阅读 · 2022年9月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
84+阅读 · 2020年12月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月18日
VIP会员
相关VIP内容
【2023新书】随机模型基础,815页pdf
专知会员服务
100+阅读 · 2023年5月10日
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
68+阅读 · 2022年9月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
84+阅读 · 2020年12月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员