A recent breakthrough in Edmonds' problem showed that the noncommutative rank can be computed in deterministic polynomial time, and various algorithms for it were devised. However, only quite complicated algorithms are known for finding a so-called shrunk subspace, which acts as a dual certificate for the value of the noncommutative rank. In particular, the operator Sinkhorn algorithm, perhaps the simplest algorithm to compute the noncommutative rank with operator scaling, does not find a shrunk subspace. Finding a shrunk subspace plays a key role in applications, such as separation in the Brascamp-Lieb polytope, one-parameter subgroups in the null-cone membership problem, and primal-dual algorithms for matroid intersection and fractional matroid matching. In this paper, we provide a simple Sinkhorn-style algorithm to find the smallest shrunk subspace over the complex field in deterministic polynomial time. To this end, we introduce a generalization of the operator scaling problem, where the spectra of the marginals must be majorized by specified vectors. Then we design an efficient Sinkhorn-style algorithm for the generalized operator scaling problem. Applying this to the shrunk subspace problem, we show that a sufficiently long run of the algorithm also finds an approximate shrunk subspace close to the minimum exact shrunk subspace. Finally, we show that the approximate shrunk subspace can be rounded if it is sufficiently close. Along the way, we also provide a simple randomized algorithm to find the smallest shrunk subspace. As applications, we design a faster algorithm for fractional linear matroid matching and efficient weak membership and optimization algorithms for the rank-2 Brascamp-Lieb polytope.


翻译:Edmonds 问题最近的突破表明, 非通缩级别可以在确定性多元时间里计算, 并且为此设计了各种算法。 但是, 找到所谓的缩缩子空间, 只有相当复杂的算法才为人所知, 也就是找到所谓的缩缩子空间, 这是用于计算非混合级别价值的双重证书。 特别是, 操作员 Sinkhorn 算法, 可能是计算操作员缩放非混合级别的最简单的算法, 找不到一个缩水的子空间。 找到一个缩水的子空间在应用程序中扮演着关键角色, 例如在 Brascamp- Lieb 多边算法中分离, 在无纸色成员问题中只知道一个一米的亚类算法, 而在本文中, 操作员 Sinkhorn 算法的最小缩水下算法中, 我们也可以找到一个更近的平流的平流层- 平流流的递增缩问题, 然后我们用一个最短的平流的平流层算法 来显示一个最短的直流的直径直流的递化的递化的亚级算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月12日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员