We consider polynomial optimization problems (POP) on a semialgebraic set contained in the nonnegative orthant (every POP on a compact set can be put in this format by a simple translation of the origin). Such a POP can be converted to an equivalent POP by squaring each variable. Using even symmetry and the concept of factor width, we propose a hierarchy of semidefinite relaxations based on the extension of P\'olya's Positivstellensatz by Dickinson-Povh. As its distinguishing and crucial feature, the maximal matrix size of each resulting semidefinite relaxation can be chosen arbitrarily and in addition, we prove that the sequence of values returned by the new hierarchy converges to the optimal value of the original POP at the rate $O(\varepsilon^{-c})$ if the semialgebraic set has nonempty interior. When applied to (i) robustness certification of multi-layer neural networks and (ii) computation of positive maximal singular values, our method based on P\'olya's Positivstellensatz provides better bounds and runs several hundred times faster than the standard Moment-SOS hierarchy.
翻译:我们考虑的是非负值或半成像中包含的半成像组中的多成形优化问题(每个紧凑组中的持久性有机污染物都可以通过简单的原产翻译以这种格式排列)。这样的持久性有机污染物可以通过对每个变量进行对比,转换成等值的持久性有机污染物。我们甚至使用对称法和要素宽度概念,根据P\'olya's Positivstellensatz的延伸,提出一个半成份优化等级。作为它的区别和关键特征,可以任意选择每个产生半成衣放松的最小矩阵大小。此外,我们证明,新等级返回的值序列与原始持久性有机污染物的最佳值一致,如果半成份数的半成像组具有非纯度的内脏。当应用到(i)多级神经网络的坚固度认证和(ii)正值最大单值的计算时,我们基于P\'ollya's 级结构的计算方法比P\'olenya's stalit-stalitives bound times be be be be be better.