With rapid developments of information and technology, large scale network data are ubiquitous. In this work we develop a distributed spectral clustering algorithm for community detection in large scale networks. To handle the problem, we distribute l pilot network nodes on the master server and the others on worker servers. A spectral clustering algorithm is first conducted on the master to select pseudo centers. The indexes of the pseudo centers are then broadcasted to workers to complete distributed community detection task using a SVD type algorithm. The proposed distributed algorithm has three merits. First, the communication cost is low since only the indexes of pseudo centers are communicated. Second, no further iteration algorithm is needed on workers and hence it does not suffer from problems as initialization and non-robustness. Third, both the computational complexity and the storage requirements are much lower compared to using the whole adjacency matrix. A Python package DCD (www.github.com/Ikerlz/dcd) is developed to implement the distributed algorithm for a Spark system. Theoretical properties are provided with respect to the estimation accuracy and mis-clustering rates. Lastly, the advantages of the proposed methodology are illustrated by experiments on a variety of synthetic and empirical datasets.


翻译:随着信息和技术的迅速发展,大规模网络数据无处不在。在这项工作中,我们为大型网络的社区探测开发了分布式光谱聚变算法。为了解决问题,我们在主服务器上和工人服务器上分配了一个试点网络节点。首先在主服务器上进行光谱聚变算法,以选择假中心。然后向工人播放伪中心索引,以便使用SVD型算法完成分布式社区检测任务。拟议的分布式算法有三长优点。首先,通信成本较低,因为只传播伪中心索引。第二,不需要工人的进一步循环算法,因此,它不会在初始化和非机器人状态上遇到问题。第三,计算复杂程度和储存要求都比使用整个相近矩阵要低得多。开发了Python软件包DCD(www.github.com/Ikerlz/dcd),以实施Spark系统的分布式算法。提供了理论属性,关于估计和误归集率的准确性和误归集率。最后,通过综合数据实验展示了拟议方法的优势。

0
下载
关闭预览

相关内容

在网络中发现社区(称为社区检测/发现)是网络科学中的一个基本问题,在过去的几十年中引起了很多关注。 近年来,随着对大数据的大量研究,另一个相关但又不同的问题(称为社区搜索)旨在寻找包含查询节点的最有可能的社区,这已引起了学术界和工业界的广泛关注,它是社区检测问题的依赖查询的变体。
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
44+阅读 · 2020年10月31日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
OODformer: Out-Of-Distribution Detection Transformer
Arxiv
1+阅读 · 2021年7月19日
Arxiv
19+阅读 · 2020年7月13日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员