Perception is an essential part of robotic manipulation in a semi-structured environment. Traditional approaches produce a narrow task-specific prediction (e.g., object's 6D pose), that cannot be adapted to other tasks and is ill-suited for deformable objects. In this paper, we propose using canonical mapping as a near-universal and flexible object descriptor. We demonstrate that common object representations can be derived from a single pre-trained canonical mapping model, which in turn can be generated with minimal manual effort using an automated data generation and training pipeline. We perform a multi-stage experiment using two robot arms that demonstrate the robustness of the perception approach and the ways it can inform the manipulation strategy, thus serving as a powerful foundation for general-purpose robotic manipulation.
翻译:概念是半结构环境中机器人操纵的一个基本部分。传统方法产生狭隘的任务特定预测(例如,物体的6D外形),不能适应其他任务,不适合变形物体。在本文中,我们提议使用金字塔绘图作为近乎普遍和灵活的物体描述符。我们证明,共同的物体表示方法可以来自单一的预先训练的精金色绘图模型,而后者又可以通过使用自动化数据生成和培训管道进行最低限度的人工操作产生。我们用两件机器人武器进行多阶段试验,以显示感知方法的稳健性及其为操纵战略提供信息的方式,从而成为通用机器人操纵的有力基础。</s>