项目名称: 导电聚(3,4-乙撑二氧噻吩)/氧化石墨烯复合材料的制备及应用

项目编号: No.51272096

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 段学民

作者单位: 江西科技师范大学

项目金额: 80万元

中文摘要: 石墨烯易团聚,难溶于水和普通有机溶剂,对氧化石墨烯(GO)改性,提高其分散性,是实现石墨烯功能化并拓展其应用的最为有效的途径之一。本项目拟采用含官能团侧链的3,4-乙撑二氧噻吩(EDOT)及其聚合物PEDOT对GO进行共价键和非共价键改性,将其与EDOT单体或PEDOT通过化学聚合、共混、电化学原位聚合三种方法制备导电PEDOT/GO复合材料,并探索其修饰电极作为电化学传感器应用于大环内酯类抗生素(MALs)的分析检测。系统研究EDOT单体和聚合物结构与改性方法对改性GO性能的影响规律,掌握导电PEDOT/GO复合材料的制备工艺,建立单种和多种MALs同时分析检测的方法。本项目首次用侧链修饰的EDOT及其聚合物改性GO,将GO的良好生物兼容性与PEDOT的优良性能结合制备PEDOT/GO复合材料,并首次将其应用于MALs的分析检测,对GO纳米复合材料的发展及应用具有重要意义。

中文关键词: 氧化石墨烯;聚(3;4-乙撑二氧噻吩);复合材料;电化学传感器;电化学性能

英文摘要: Graphene is easy to agglomerate and is insoluble in water and common organic solvents. Modification of graphene oxide (GO) to improve its dispersion is one of the most effective way to achieve the functionalization of graphene and expand its application. This project is designed to modify the GO through covalent and non-covalent bonds by 3,4-ethylenedioxythiophene (EDOT) and its polymer PEDOT with functional group side chains, then polymerize the modified GO and the EDOT monomers or PEDOT via chemical oxidative polymerization, blending or in-situ electrochemical polymerization to prepare conducting PEDOT/GO composites, and explore the detection of macrolide antibiotics (MALs) using the composites to modified electrodes as electrochemical sensors. In the project, the influence of the structures of EDOT monomers and polymers and modified methods of GO on properties of GO will be systematically studied. In addition, the preparation process of the conducting PEDOT/GO composites will be explored, and the detection method of single and various MALs will be established. The project is likely to be the first one to modify GO using the side chain functional EDOT and its polymers. The project is also likely to pioneer in the integration of the good biocompatibility of GO and the excellent performances of the PEDOT in the

英文关键词: Graphene Oxide;Poly(3;4-ethylenedithiathiophene);Composites;Electrochemical Sensor;Electrochemical Properties

成为VIP会员查看完整内容
0

相关内容

专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
27+阅读 · 2021年8月24日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
【CVPR2021】神经网络中的知识演化
专知会员服务
25+阅读 · 2021年3月11日
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
专知会员服务
106+阅读 · 2020年11月27日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
13+阅读 · 2020年10月19日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
27+阅读 · 2021年8月24日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
【CVPR2021】神经网络中的知识演化
专知会员服务
25+阅读 · 2021年3月11日
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
专知会员服务
106+阅读 · 2020年11月27日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员