The conventional wisdom of manifold learning is based on nonlinear dimensionality reduction techniques such as IsoMAP and locally linear embedding (LLE). We challenge this paradigm by exploiting the blessing of dimensionality. Our intuition is simple: it is easier to untangle a low-dimensional manifold in a higher-dimensional space due to its vastness, as guaranteed by Whitney embedding theorem. A new insight brought by this work is to introduce class labels as the context variables in the lifted higher-dimensional space (so supervised learning becomes unsupervised learning). We rigorously show that manifold untangling leads to linearly separable classifiers in the lifted space. To correct the inevitable overfitting, we consider the dual process of manifold untangling -- tangling or aliasing -- which is important for generalization. Using context as the bonding element, we construct a pair of manifold untangling and tangling operators, known as tangling-untangling cycle (TUC). Untangling operator maps context-independent representations (CIR) in low-dimensional space to context-dependent representations (CDR) in high-dimensional space by inducing context as hidden variables. The tangling operator maps CDR back to CIR by a simple integral transformation for invariance and generalization. We also present the hierarchical extensions of TUC based on the Cartesian product and the fractal geometry. Despite the conceptual simplicity, TUC admits a biologically plausible and energy-efficient implementation based on the time-locking behavior of polychronization neural groups (PNG) and sleep-wake cycle (SWC). The TUC-based theory applies to the computational modeling of various cognitive functions by hippocampal-neocortical systems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
10+阅读 · 2021年3月30日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
10+阅读 · 2021年3月30日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员