We study the problem of finding connected components in the Adaptive Massively Parallel Computation (AMPC) model. We show that when we require the total space to be linear in the size of the input graph the problem can be solved in $O(\log^* n)$ rounds in forests (with high probability) and $2^{O(\log^* n)}$ expected rounds in general graphs. This improves upon an existing $O(\log \log_{m/n} n)$ round algorithm. For the case when the desired number of rounds is constant we show that both problems can be solved using $\Theta(m + n \log^{(k)} n)$ total space in expectation (in each round), where $k$ is an arbitrarily large constant and $\log^{(k)}$ is the $k$-th iterate of the $\log_2$ function. This improves upon existing algorithms requiring $\Omega(m + n \log n)$ total space.
翻译:我们研究了在适应性大规模平行计算(AMPC)模型中找到连接组件的问题。 我们显示, 当我们要求输入图大小的总空间线性时, 问题可以用$O( log) n) 森林( 概率高) 和$2\O( log) n) 来解决。 这改进了现有的$O( log)\ log@ m/ n) 圆算法 。 对于需要的回合数量恒定的情况, 我们表明, 两种问题都可以用$Theta( m + n\log * (k) n) 来解决( 每回合) 的预期总空间, $k$是一个任意大的常数, $\ log_ { (k) 美元是$\ 美元函数的万倍值。 这改进了需要$\ omega( m + n\ log n) 的总空间的现有算法 。