Nonlinearity parameter tomography leads to the problem of identifying a coefficient in a nonlinear wave equation (such as the Westervelt equation) modeling ultrasound propagation. In this paper we transfer this into frequency domain, where the Westervelt equation gets replaced by a coupled system of Helmholtz equations with quadratic nonlinearities. For the case of the to-be-determined nonlinearity coefficient being a characteristic function of an unknown, not necessarily connected domain $D$, we devise and test a reconstruction algorithm based on weighted point source approximations combined with Newton's method. In a more abstract setting, convergence of a regularised Newton type method for this inverse problem is proven by verifying a range invariance condition of the forward operator and establishing injectivity of its linearisation.
翻译:非线性参数层析成像涉及确定仿真超声传播方程(如Westervelt方程)中的系数问题。本文中,我们将问题转换到频域,将Westervelt方程替换为带二次非线性项的耦合Helmholtz方程组。对于待确定的非线性系数为未知,不一定连接的域$D$的特征函数的情况,我们设计并测试了一个基于加权点源逼近和Newton方法的重建算法。在更抽象的层面上,通过验证正演算符的范围不变性条件并确定其线性化的单射性,证明了用于该逆问题的正则化Newton类型方法的收敛性。