We consider a Beckmann formulation of an unbalanced optimal transport (UOT) problem. The $\Gamma$-convergence of this formulation of UOT to the corresponding optimal transport (OT) problem is established as the balancing parameter $\alpha$ goes to infinity. The discretization of the problem is further shown to be asymptotic preserving regarding the same limit, which ensures that a numerical method can be applied uniformly and the solutions converge to the one of the OT problem automatically. Particularly, there exists a critical value, which is independent of the mesh size, such that the discrete problem reduces to the discrete OT problem for $\alpha$ being larger than this critical value. The discrete problem is solved by a convergent primal-dual hybrid algorithm and the iterates for UOT are also shown to converge to that for OT. Finally, numerical experiments on shape deformation and partial color transfer are implemented to validate the theoretical convergence and the proposed numerical algorithm.


翻译:本文考虑了Beckmann对不平衡最优输运(UOT)问题的一个表述。随着平衡参数α趋于无穷大,证明了此表述的UOT $\Gamma$-收敛到对应的最优输运(OT)问题。同时,证明了该问题的离散化在相同极限下也具备渐近保持性,确保数值方法可以统一应用且解自动收敛到最优输运问题的解。特别地,存在一个临界值,该值与网格大小无关,当α大于该临界值时,离散问题可简化为离散OT问题。本文采用收敛的原始-对偶混合算法求解了离散问题,并证明了UOT迭代也收敛于OT迭代。最后,我们通过形状变形和部分颜色转移的数值实验验证了理论收敛和所提出的数值算法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
44+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
0+阅读 · 2023年5月17日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员