Safe and efficient collaboration among multiple robots in unstructured environments is increasingly critical in the era of Industry 4.0. However, achieving robust and autonomous collaboration among humans and other robots requires modern robotic systems to have effective proximity perception and reactive obstacle avoidance. In this paper, we propose a novel methodology for reactive whole-body obstacle avoidance that ensures conflict-free robot-robot interactions even in dynamic environment. Unlike existing approaches based on Jacobian-type, sampling based or geometric techniques, our methodology leverages the latest deep learning advances and topological manifold learning, enabling it to be readily generalized to other problem settings with high computing efficiency and fast graph traversal techniques. Our approach allows a robotic arm to proactively avoid obstacles of arbitrary 3D shapes without direct contact, a significant improvement over traditional industrial cobot settings. To validate our approach, we implement it on a robotic platform consisting of dual 6-DoF robotic arms with optimized proximity sensor placement, capable of working collaboratively with varying levels of interference. Specifically, one arm performs reactive whole-body obstacle avoidance while achieving its pre-determined objective, while the other arm emulates the presence of a human collaborator with independent and potentially adversarial movements. Our methodology provides a robust and effective solution for safe human-robot collaboration in non-stationary environments.


翻译:安全高效的多个机器人在非结构化环境中的协作变得越来越关键,在工业4.0时代也更加重要。然而,要使人与其他机器人之间实现强大而自治的协作,需要现代机器人系统具备有效的近距离感知和反应式避障。本文提出了一种基于深度学习和拓扑流形学习的反应式全身避障策略。与基于Jacobian、采样或几何技术的现有方法不同,我们的方法具有较高的运算效率和快速的图遍历技术,可以轻松推广到其他问题设置中。本方法允许机械臂在不碰撞的情况下主动避开任意3D形状的障碍物,是传统工业协作机器人设置的显著改进。为了验证我们的方法,我们将其实现在一个由两个6自由度机械臂组成的机器人平台上,该平台具有优化的近距离传感器安置,能够在不同程度的干扰下协作工作。具体而言,一个机械臂在实现预定目标的同时执行反应式全身避障,而另一个机械臂则模拟独立运动、可能具有对抗性的人类协作者的存在。我们的方法为非静态环境中安全的人机协作提供了强大而有效的解决方案。

0
下载
关闭预览

相关内容

【CVPR2022】多机器人协同主动建图算法
专知会员服务
47+阅读 · 2022年4月3日
CVPR 2021 Oral | 室内动态场景中的相机重定位
专知会员服务
15+阅读 · 2021年4月12日
《行为与认知机器人学》,241页pdf
专知会员服务
53+阅读 · 2021年4月11日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月12日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员