The aim of noisy phase retrieval is to estimate a signal $\mathbf{x}_0\in \mathbb{C}^d$ from $m$ noisy intensity measurements $b_j=\left\lvert \langle \mathbf{a}_j,\mathbf{x}_0 \rangle \right\rvert^2+\eta_j, \; j=1,\ldots,m$, where $\mathbf{a}_j \in \mathbb{C}^d$ are known measurement vectors and $\eta=(\eta_1,\ldots,\eta_m)^\top \in \mathbb{R}^m$ is a noise vector. A commonly used model for estimating $\mathbf{x}_0$ is the intensity-based model $\widehat{\mathbf{x}}:=\mbox{argmin}_{\mathbf{x} \in \mathbb{C}^d} \sum_{j=1}^m \big(\left\lvert \langle \mathbf{a}_j,\mathbf{x} \rangle \right\rvert^2-b_j \big)^2$. Although one has already developed many efficient algorithms to solve the intensity-based model, there are very few results about its estimation performance. In this paper, we focus on the estimation performance of the intensity-based model and prove that the error bound satisfies $\min_{\theta\in \mathbb{R}}\|\widehat{\mathbf{x}}-e^{i\theta}\mathbf{x}_0\|_2 \lesssim \min\Big\{\frac{\sqrt{\|\eta\|_2}}{{m}^{1/4}}, \frac{\|\eta\|_2}{\| \mathbf{x}_0\|_2 \cdot \sqrt{m}}\Big\}$ under the assumption of $m \gtrsim d$ and $\mathbf{a}_j, j=1,\ldots,m,$ being Gaussian random vectors. We also show that the error bound is sharp. For the case where $\mathbf{x}_0$ is a $s$-sparse signal, we present a similar result under the assumption of $m \gtrsim s \log (ed/s)$. To the best of our knowledge, our results are the first theoretical guarantees for the intensity-based model and its sparse version. Our proofs employ Mendelson's small ball method which can deliver an effective lower bound on a nonnegative empirical process.
翻译:噪音阶段检索的目的是用 $\ mathbf{x} 0\\\ in\ mathb{C} 来估计一个信号 $\ mathbf{x} 以 mathb{ a\j,\\\\\\\\\rgn\\rver\rver\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\fn; j=1\\\\\\\\\ldot} 以 $\ mathb{mab{ a\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\