The phase retrieval problem is concerned with recovering an unknown signal $\bf{x} \in \mathbb{R}^n$ from a set of magnitude-only measurements $y_j=|\langle \bf{a}_j,\bf{x} \rangle|, \; j=1,\ldots,m$. A natural least squares formulation can be used to solve this problem efficiently even with random initialization, despite its non-convexity of the loss function. One way to explain this surprising phenomenon is the benign geometric landscape: (1) all local minimizers are global; and (2) the objective function has a negative curvature around each saddle point and local maximizer. In this paper, we show that $m=O(n \log n)$ Gaussian random measurements are sufficient to guarantee the loss function of a commonly used estimator has such benign geometric landscape with high probability. This is a step toward answering the open problem given by Sun-Qu-Wright, in which the authors suggest that $O(n \log n)$ or even $O(n)$ is enough to guarantee the favorable geometric property.
翻译:阶段检索问题涉及从一个星级测量器中恢复一个未知的信号$\bf{x}\ in\mathbb{R ⁇ n$ 。 从一组量度测量器中恢复一个未知的信号$y_j ⁇ langle \bf{j,\bf{x}\rangle},\j=1,\ldots,m$。 自然最小方形的配方可以用来有效解决这一问题,即使随机初始化不协调损失函数。解释这一惊人现象的一个方法就是良性几何景观:(1) 所有本地最小化器都是全球性的;(2) 目标函数在每个马鞍点和本地最大化器周围都有负曲线。 在本文件中,我们显示$=O(n\log n) 高斯随机测量器的值足以保证常用估量器的损失功能, 高概率高。 这是向解答Sun-Qu-Wright给出的开放式问题迈出的一步, 作者们认为$O(n\log n$) 或甚至$O(sfrigal) 保证该属性足够可保证美元。