This work describes the development and validation of a fully automated deep learning model, iDAScore v2.0, for the evaluation of embryos incubated for 2, 3, and 5 or more days. The model is trained and evaluated on an extensive and diverse dataset including 181,428 embryos from 22 IVF clinics across the world. For discriminating transferred embryos with known outcome (KID), we show AUCs ranging from 0.621 to 0.708 depending on the day of transfer. Predictive performance increased over time and showed a strong correlation with morphokinetic parameters. The model has equivalent performance to KIDScore D3 on day 3 embryos while significantly surpassing the performance of KIDScore D5 v3 on day 5+ embryos. This model provides an analysis of time-lapse sequences without the need for user input, and provides a reliable method for ranking embryos for likelihood to implant, at both cleavage and blastocyst stages. This greatly improves embryo grading consistency and saves time compared to traditional embryo evaluation methods.
翻译:这项工作描述了一个完全自动化的深层学习模型(iDAScore v2.0)的开发和验证,该模型用于对孕育2天、3天和5天以上的胚胎进行评估,该模型在广泛多样的数据集(包括世界各地22个IVF诊所的181,428个胚胎)上接受培训和评价,该数据集包括世界各地22个IVF诊所的181,428个胚胎。为了区别已知结果的转移胚胎(KID),我们显示AUC值在转移当日为0.621至0.708不等。预测性能随着时间的推移而增加,并显示出与乳腺参数的强烈关联。该模型相当于KIDScore D3胚胎在第3天的性能,同时大大超过KIDScore D5 v3在5天以上的胚胎的性能。该模型提供了对不需用户投入的延时序列的分析,并为胚胎进行移植的可能性排序提供了可靠的方法,在切裂和爆炸阶段都是如此。这大大改进了胚胎的成一致性并节省了时间与传统的胚胎评价方法。