Classification of cancer cellularity within tissue samples is currently a manual process performed by pathologists. This process of correctly determining cancer cellularity can be time intensive. Deep Learning (DL) techniques in particular have become increasingly more popular for this purpose, due to the accuracy and performance they exhibit, which can be comparable to the pathologists. This work investigates the capabilities of two DL approaches to assess cancer cellularity in whole slide images (WSI) in the SPIE-AAPM-NCI BreastPathQ challenge dataset. The effects of training on augmented data via rotations, and combinations of multiple architectures into a single network were analyzed using a modified Kendall Tau-b prediction probability metric known as the average prediction probability PK. A deep, transfer learned, Convolutional Neural Network (CNN) InceptionV3 was used as a baseline, achieving an average PK value of 0.884, showing improvement from the average PK value of 0.83 achieved by pathologists. The network was then trained on additional training datasets which were rotated between 1 and 360 degrees, which saw a peak increase of PK up to 4.2%. An additional architecture consisting of the InceptionV3 network and VGG16, a shallow, transfer learned CNN, was combined in a parallel architecture. This parallel architecture achieved a baseline average PK value of 0.907, a statistically significantly improvement over either of the architectures' performances separately (p<0.0001 by unpaired t-test).


翻译:组织样本中的癌症细胞分类目前是一个由病理学家执行的人工过程。 正确确定癌症细胞性的过程可以时间密集。 深学习(DL)技术由于准确性和性能,可以与病理学家相仿,因此在这方面越来越受欢迎。 这项工作调查了两种DL方法在SPIE-APM-NCI CampalPathQ挑战数据集中用整张幻灯片图像评估癌症细胞性的能力(WSI),与SPIE-AMM-NCI-NCI Campal PathQ挑战数据集中平均0.83PK值相比,平均PK值的平均值提高了。 培训对通过轮换增加数据以及将多个结构合并成一个单一网络的影响进行了分析,使用一个修改后的Kendall Tau-b预测概率指标,称为平均预测概率PK。 深、学过、学过、进过、进进进进的进进进神经系统网络(CNISMIS)3的平行结构得到了显著的升级。 一级结构由SISNISV的平行结构得到了显著的升级。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Safe Path following for Middle Ear Surgery
Arxiv
0+阅读 · 2023年1月3日
Arxiv
0+阅读 · 2023年1月3日
Arxiv
0+阅读 · 2022年12月29日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员