We provide a full characterisation of all of the possible alternating group ($A_n$) equivariant neural networks whose layers are some tensor power of $\mathbb{R}^{n}$. In particular, we find a basis of matrices for the learnable, linear, $A_n$-equivariant layer functions between such tensor power spaces in the standard basis of $\mathbb{R}^{n}$. We also describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries.
翻译:我们提供了所有可能的交替组合(A_n$)等异质神经网络的完整特性,这些网络的层层具有一定的抗拉功率($mathbb{R ⁇ n}$),特别是,我们找到了一个基质,用于在这种高压电位之间可学习的、线性、无A$-等同层功能的矩阵,标准基数是$\mathbb{R ⁇ n}$。我们还描述了我们如何概括构建与本地对称等的神经网络。