Understanding and predicting environmental phenomena often requires the construction of spatio-temporal statistical models, which are typically Gaussian processes. A common assumption made on Gaussian processes is that of covariance stationarity, which is unrealistic in many geophysical applications. In this article, we introduce a deep-learning-inspired approach to construct descriptive nonstationary spatio-temporal models by modeling stationary processes on warped spatio-temporal domains. The warping functions we use are constructed using several simple injective warping units which, when combined through composition, can induce complex warpings. A stationary spatio-temporal covariance function on the warped domain induces covariance nonstationarity on the original domain. Sparse linear algebraic methods are used to reduce the computational complexity when fitting the model in a big data setting. We show that our proposed nonstationary spatio-temporal model can capture covariance nonstationarity in both space and time, and provide better probabilistic predictions than conventional stationary models in both simulation studies and on a real-world data set.
翻译:理解和预测环境现象往往需要构建时空统计模型,这些模型通常是高斯过程。高斯过程的一个共同假设是常态常态,在许多地球物理应用中是不现实的。在本篇文章中,我们采用了深层学习启发的方法,通过在扭曲的时空域上建模固定过程来构建描述性非静止时空模型。我们使用的扭曲功能是使用几个简单的投射扭曲单元来构建的,这些单元通过组成组合可以诱发复杂的扭曲。在模拟研究和现实世界数据集中,固定的时空常态常态常态常态常态常态函数都会导致原始领域的常态常态不常态性。在将模型安装在大型数据环境中时,我们采用偏差的线性变位法来降低计算复杂性。我们显示,我们提议的非静态时空模型可以捕捉空间和时间的常态常态,并且比常规的常态模型提供更好的不稳定性预测。</s>