Lithography is fundamental to integrated circuit fabrication, necessitating large computation overhead. The advancement of machine learning (ML)-based lithography models alleviates the trade-offs between manufacturing process expense and capability. However, all previous methods regard the lithography system as an image-to-image black box mapping, utilizing network parameters to learn by rote mappings from massive mask-to-aerial or mask-to-resist image pairs, resulting in poor generalization capability. In this paper, we propose a new ML-based paradigm disassembling the rigorous lithographic model into non-parametric mask operations and learned optical kernels containing determinant source, pupil, and lithography information. By optimizing complex-valued neural fields to perform optical kernel regression from coordinates, our method can accurately restore lithography system using a small-scale training dataset with fewer parameters, demonstrating superior generalization capability as well. Experiments show that our framework can use 31\% of parameters while achieving 69$\times$ smaller mean squared error with 1.3$\times$ higher throughput than the state-of-the-art.
翻译:液晶学是集成电路制造的基础,需要大量计算间接费用。机器学习(ML)的平面学模型的推进减轻了制造过程成本和能力之间的权衡。然而,以往所有方法都把岩晶学系统视为图像到图像黑盒绘图,利用网络参数从大型遮罩到空气或遮罩到抗热图像配对的轮状绘图中学习,从而导致一般化能力差。在本文中,我们提出了一个新的基于ML的模型,将严格的平面学模型拆分为非参数化遮罩操作和含有决定因素源、学生和岩晶学信息的学习光心。通过优化复杂价值的神经领域,从坐标上进行光心层回归,我们的方法可以精确地恢复岩晶系统,使用参数较少的小规模培训数据集,展示出更高的一般化能力。实验表明,我们的框架可以使用31个参数,同时达到69美元较低的平均平方差,比州造价高出1.3美元。</s>