Fractional partial differential equations (FPDEs) can effectively represent anomalous transport and nonlocal interactions. However, inherent uncertainties arise naturally in real applications due to random forcing or unknown material properties. Mathematical models considering nonlocal interactions with uncertainty quantification can be formulated as stochastic fractional partial differential equations (SFPDEs). There are many challenges in solving SFPDEs numerically, especially for long-time integration since such problems are high-dimensional and nonlocal. Here, we combine the bi-orthogonal (BO) method for representing stochastic processes with physics-informed neural networks (PINNs) for solving partial differential equations to formulate the bi-orthogonal PINN method (BO-fPINN) for solving time-dependent SFPDEs. Specifically, we introduce a deep neural network for the stochastic solution of the time-dependent SFPDEs, and include the BO constraints in the loss function following a weak formulation. Since automatic differentiation is not currently applicable to fractional derivatives, we employ discretization on a grid to to compute the fractional derivatives of the neural network output. The weak formulation loss function of the BO-fPINN method can overcome some drawbacks of the BO methods and thus can be used to solve SFPDEs with eigenvalue crossings. Moreover, the BO-fPINN method can be used for inverse SFPDEs with the same framework and same computational complexity as for forward problems. We demonstrate the effectiveness of the BO-fPINN method for different benchmark problems. The results demonstrate the flexibility and efficiency of the proposed method, especially for inverse problems.


翻译:Bi-正交 fPINN: 一种物理启发的神经网络方法,用于解决时间相关的随机分数PDE 分数偏微分方程(FPDE)可以有效地表示异质传输和非局部相互作用。然而,在真实应用中,由于随机强迫或未知材料特性,天然产生固有不确定性. 考虑到非局部相互作用与不确定性的数学模型可以被制定为随机分数偏微分方程(SFPDE)。在数值上解决SFPDE具有许多挑战,特别是对于长时间积分,因为这种问题是高维和非局部的. 在此,我们将双正交(BO)方法用于表示随机过程,将物理启发的神经网络(PINNs)用于解决偏微分方程,以制定双正交 PINN 方法(BO-fPINN) 以解决时间相关的SFPDE. 具体而言,我们为时间相关的SFPDE的随机解引入了深度神经网络,并在损失函数中包含BO约束,遵循弱的表述。由于自动微分目前不适用于分数导数,因此我们采用网格上的离散化来计算神经网络输出的分数导数。 双正交 PINN 方法的弱制式损失函数可以克服双正交方法的一些缺点,因此可用于解决具有特征值交叉的SFPDE. 此外,BO-fPINN 方法可以用于具有与正向问题相同的框架和计算复杂性的逆SFPDE。 我们展示了BO-fPINN方法在不同基准问题上的有效性。结果展示了所提出方法的灵活性和效率,特别是对于逆问题.

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月9日
Arxiv
0+阅读 · 2023年5月9日
Arxiv
22+阅读 · 2022年2月4日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员