Neurons in the brain are complex machines with distinct functional compartments that interact nonlinearly. In contrast, neurons in artificial neural networks abstract away this complexity, typically down to a scalar activation function of a weighted sum of inputs. Here we emulate more biologically realistic neurons by learning canonical activation functions with two input arguments, analogous to basal and apical dendrites. We use a network-in-network architecture where each neuron is modeled as a multilayer perceptron with two inputs and a single output. This inner perceptron is shared by all units in the outer network. Remarkably, the resultant nonlinearities reliably produce soft XOR functions, consistent with recent experimental observations about interactions between inputs in human cortical neurons. When hyperparameters are optimized, networks with these nonlinearities learn faster and perform better than conventional ReLU nonlinearities with matched parameter counts, and they are more robust to natural and adversarial perturbations.
翻译:大脑中的神经神经是复杂的机器,其功能区隔不同,可以非线性地相互作用。相比之下,人工神经网络中的神经质将这一复杂性抽象化,通常到一个加权投入总和的缩放激活功能。在这里,我们通过学习两个输入参数来学习更符合生物学现实的神经元,这些输入参数与直线和直径相似。我们使用网络内结构,其中每个神经元都建为多层透镜模型,并有两个输入和单一输出。这个内部透镜由外部网络的所有单位共享。很明显,所产生的非线性非线性能可靠地产生软 XOR 功能,这与最近关于人类皮质神经投入相互作用的实验观测相一致。在进行优化时,与这些非线性神经元的网络学习速度更快,并且比常规的 ReLU非线性参数要好,而且它们对于自然和对抗性扰动作用更强大。