Bayesian disease mapping, yet if undeniably useful to describe variation in risk over time and space, comes with the hurdle of prior elicitation on hard-to-interpret random effect precision parameters. We introduce a reparametrized version of the popular spatio-temporal interaction models, based on Kronecker product intrinsic Gaussian Markov Random Fields, that we name the variance partitioning (VP) model. The VP model includes a mixing parameter that balances the contribution of the main and interaction effects to the total (generalized) variance and enhances interpretability. The use of a penalized complexity prior on the mixing parameter aids in coding prior information in a intuitive way. We illustrate the advantages of the VP model using two case studies.
翻译:Bayesian 疾病测绘,虽然不可否认地有助于描述时间和空间风险的变化,但与难解随机效应精确参数的事先引证障碍有关。我们引入了流行的spatio-时间互动模型的重新修复版本,该模型以Kronecker产品固有的Gaussian Markov随机字段为基础,我们命名了差异分割模型。VP模型包括一个混合参数,该参数平衡了主要效应和相互作用效应对(一般)差异的总体影响的贡献,提高了解释性。在混合参数辅助器之前,用一种受罚的复杂度来直观地编码先前的信息。我们用两个案例研究来说明VP模型的优点。