This paper proposes a general procedure to analyse high-dimensional spatio-temporal count data, with special emphasis on relative risks estimation in cancer epidemiology. More precisely, we present a pragmatic and simple idea that permits to fit hierarchical spatio-temporal models when the number of small areas is very large. Model fitting is carried out using integrated nested Laplace approximations over a partition of the spatial domain. We also use parallel and distributed strategies to speed up computations in a setting where Bayesian model fitting is generally prohibitively time-consuming and even unfeasible. The whole procedure is evaluated in a simulation study with a twofold objective: to estimate risks accurately and to detect extreme risk areas while avoiding false positives/negatives. We show that our method outperforms classical global models. A real data analysis comparing the global models and the new procedure is also presented.
翻译:本文提出了分析高维时空计数数据的一般程序,特别强调癌症流行病学的相对风险估计,更确切地说,我们提出了一个实用和简单的想法,允许在小面积非常大的情况下,采用等级标准时空模型;在空间域分隔上使用综合嵌套的拉帕热近似值进行模型安装;我们还使用平行和分布式战略,在贝叶西亚模型安装通常耗时甚多,甚至不可行的情况下加快计算;在模拟研究中评估整个程序有两个目的:准确估计风险和探测极端风险领域,同时避免错误的正反效果/负作用;我们表明,我们的方法优于传统的全球模型;还介绍了比较全球模型和新程序的真正数据分析。