A Maximum Likelihood recursive state estimator is derived for non-linear and non-Gaussian state-space models. The estimator combines a particle filter to generate the conditional density and the Expectation Maximization algorithm to compute the maximum likelihood state estimate iteratively. Algorithms for maximum likelihood state filtering, prediction and smoothing are presented. The convergence properties of these algorithms, which are inherited from the Expectation Maximization algorithm, are proven and examined in two examples. It is shown that, with randomized reinitialization, which is feasible because of the algorithm simplicity, these methods are able to converge to the Maximum Likelihood Estimate (MLE) of multimodal, truncated and skewed densities, as well as those of disjoint support.


翻译:对非线性和非加西非国家空间模型,可得出最大相似性递归国家估计值。估计值将粒子过滤器组合起来,生成有条件密度和期望最大化算法,以迭代计算最大概率国家估计值。提出了最大可能性国家过滤、预测和平滑的算法。从预期最大化算法中继承的这些算法的趋同特性在两个例子中得到验证和审查。事实证明,由于算法简单化,随机重新初始化是可行的,这些方法能够与多式联运、脱轨和偏斜密度的最大相似性估计值以及不协调支持值相融合。

0
下载
关闭预览

相关内容

【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Bias in Zipf's Law Estimators
Arxiv
0+阅读 · 2021年5月12日
Arxiv
0+阅读 · 2021年5月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Top
微信扫码咨询专知VIP会员