Supertree methods are tree reconstruction techniques that combine several smaller gene trees (possibly on different sets of species) to build a larger species tree. The question of interest is whether the reconstructed supertree converges to the true species tree as the number of gene trees increases (that is, the consistency of supertree methods). In this paper, we are particularly interested in the convergence rate of the maximum likelihood supertree. Previous studies on the maximum likelihood supertree approach often formulate the question of interest as a discrete problem and focus on reconstructing the correct topology of the species tree. Aiming to reconstruct both the topology and the branch lengths of the species tree, we propose an analytic approach for analyzing the convergence of the maximum likelihood supertree method. Specifically, we consider each tree as one point of a metric space and prove that the distance between the maximum likelihood supertree and the species tree converges to zero at a polynomial rate under some mild conditions. We further verify these conditions for the popular exponential error model of gene trees.
翻译:超级树的方法是树木重建技术,将几棵较小的基因树(可能针对不同物种组)合在一起,以建立更大的树种。感兴趣的问题是,经过重建的超级树是否随着基因树数量的增加(即超级树方法的一致性)而与真正的物种树相融合。在本文中,我们特别感兴趣的是最大可能性超级树的趋同率。以前关于最大可能性超级树方法的研究往往将利息问题作为一个孤立的问题,并侧重于重建物种树的正确地形。为了重建物种树的地形和分支长度,我们提出了分析最大可能性超树方法汇合的分析性方法。具体地说,我们把每棵树视为一个衡量空间的一个点,并证明在某种温和条件下,最大可能性超级树和树种树之间的距离在某些温和条件下会达到零。我们进一步核实了基因树流行的指数误差模型的这些条件。