We characterize the complexity of minimizing $\max_{i\in[N]} f_i(x)$ for convex, Lipschitz functions $f_1,\ldots, f_N$. For non-smooth functions, existing methods require $O(N\epsilon^{-2})$ queries to a first-order oracle to compute an $\epsilon$-suboptimal point and $\tilde{O}(N\epsilon^{-1})$ queries if the $f_i$ are $O(1/\epsilon)$-smooth. We develop methods with improved complexity bounds of $\tilde{O}(N\epsilon^{-2/3} + \epsilon^{-8/3})$ in the non-smooth case and $\tilde{O}(N\epsilon^{-2/3} + \sqrt{N}\epsilon^{-1})$ in the $O(1/\epsilon)$-smooth case. Our methods consist of a recently proposed ball optimization oracle acceleration algorithm (which we refine) and a careful implementation of said oracle for the softmax function. We also prove an oracle complexity lower bound scaling as $\Omega(N\epsilon^{-2/3})$, showing that our dependence on $N$ is optimal up to polylogarithmic factors.
翻译:将 $( max)\\ i\ i\ i\ in[ N]} f_i( x) 的复杂度最小化 。 对于非移动功能, 现有方法需要 $( N\\ epsilon)\\ \ 2} ( 2}) 在非移动情况下, 向第一个端点查询, 以计算 $( epsilon) $- 亚优度点 和 $\ tilde{ O} ( n\ silon) + 美元 美元 美元( $( 1/\ epsilon) 美元) 。 我们开发的方法在 $\ telde{ ( N\ epsilon) \ 2/3} (+\ ipslon\ 8/3} + 美元( 美元) 优先级查询 。 在 $( $( 1/\ epsilon) $- smoophet ) 中, 以更精细的精细的缩缩缩缩缩缩缩的功能 。