Surveys show that the mean absolute percentage error (MAPE) is the most widely used measure of forecast accuracy in businesses and organizations. It is however, biased: When used to select among competing prediction methods it systematically selects those whose predictions are too low. This is not widely discussed and so is not generally known among practitioners. We explain why this happens. We investigate an alternative relative accuracy measure which avoids this bias: the log of the accuracy ratio: log (prediction / actual). Relative accuracy is particularly relevant if the scatter in the data grows as the value of the variable grows (heteroscedasticity). We demonstrate using simulations that for heteroscedastic data (modelled by a multiplicative error factor) the proposed metric is far superior to MAPE for model selection. Another use for accuracy measures is in fitting parameters to prediction models. Minimum MAPE models do not predict a simple statistic and so theoretical analysis is limited. We prove that when the proposed metric is used instead, the resulting least squares regression model predicts the geometric mean. This important property allows its theoretical properties to be understood.
翻译:调查显示,平均绝对百分率错误(MAPE)是商业和组织中最广泛使用的预测准确度尺度。 但是,它有偏差:当用于在相互竞争的预测方法中选择时,它系统地选择那些预测过低的预测方法。对此没有广泛讨论,从业者中一般不为人所知。我们解释这种情况发生的原因。我们调查了另一个避免这种偏差的相对准确度尺度:精确率的日志:日志(预测/实际)。当数据中的散射随着变量增长值(湿度)而增长时,相对准确性特别相关。我们用模型模拟来模拟(以多重错误系数为模型的模型),显示拟议指标在模型选择方面远优于MAPE。精确度衡量的另一个用途是预测模型的适当参数。最小的MAPE模型并不预测简单的统计,因此理论分析是有限的。我们证明,在使用拟议指标时,由此产生的最小方位回归模型预测了几何平均值。这个重要属性使得其理论属性能够被理解。