This work addresses the problem of solving the Cahn-Hilliard equation numerically. For that we introduce an abstract formulation for Cahn-Hilliard type equations with dynamic boundary conditions, we conduct the spatial semidiscretization via finite elements and prove error bounds based on the technique of energy estimates. The variational formulation for Cahn-Hilliard/Cahn-Hilliard coupling, will apply to a larger abstract class of problems and is similar to the usual weak formulation of parabolic problems. In contrast to problems with non dynamic boundary conditions, the Hilbert spaces $L^2(\Omega)$ and $H^1(\Omega)$ are exchanged with the spaces $L^2(\Omega)\times L^2(\Gamma)$ and $\lbrace v\in H^1(\Omega): \gamma v \in H^1(\Gamma)\rbrace$, respectively. Because we are considering a fourth-order differential equation, which will be described by a system of two second-order differential equations, the variational formulation also consists of a system of two equations.
翻译:这项工作从数字上解决了卡赫- 希利亚德方程式的解答问题。 我们为Cahn- 希利亚德方程式引入了带有动态边界条件的抽象配方,我们通过有限的元素进行空间半分化,并根据能源估计技术证明错误界限。 Cahn- 希利亚德/ 迦赫- 希利亚德的变换配方将适用于更大的抽象问题类别,与通常的抛物线问题的微弱配方类似。 与非动态边界条件的问题相反, Hilbert 空间 $2( 奥米加) $ 和 $H1 (奥米加) $1 (奥米加) 与空格 $2( 2( 奥米加)\ 时间L2 (Gamma)\ $lbrace v\ in H%1 (\ 欧米加):\ amma v in H% 1 (伽马)\ rbrace$ 分别适用。 由于我们正在考虑第四级差异方程式, 方程式将由两个二级差异方程式系统加以描述。