项目名称: 一类两相流的适定性问题研究
项目编号: No.11301192
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 李颖花
作者单位: 华南师范大学
项目金额: 22万元
中文摘要: 在本项目中,我们研究具扩散界面两相流中的非线性偏微分方程组的若干问题。 与经典的两相流模型相比较,本项目所要考虑的具扩散界面的两相流模型可以更自然地描述两相流中分界面的拓扑性质,尤其是对分界面出现奇性时的数学刻画。本项目主要考虑的方程组包括Navier-Stokes/Cahn-Hilliard 耦合方程组和Navier-Stokes/Allen-Cahn 耦合方程组。拟考虑的问题包括:解的适定性、爆破准则、解的渐近性质以及扩散界面厚度趋于零时的渐近极限、自由边界问题等。本项目拟研究的问题是近年来出现的具有鲜明物理背景的新问题。本项目的研究既能丰富和发展偏微分方程的数学理论,又能为实际问题的研究提供重要的理论参考。
中文关键词: 两相流;适定性;扩散界面;;
英文摘要: In this project, we will investigate the nonlinear differential equations arisen from diffuse interface models for two-phase flows. Compared to the classical models, the diffuse interface models considered in this project can give a more natural description to the topological transitions of the interface, especially for the cases when the interface occurs singularities. The considered equations include coupled Navier-Stokes/Cahn-Hilliard and Navier-Stokes/Allen-Cahn equations. We are interested in various properties of the solutions, such as the well-posedness, blow-up criteria, asymptotic properties, the asymptotic limit when the interfacial thickness tends to zero and free boundary value problems. The problems considered in this project, which appear in recent years and have obvious physical background, are brand-new. The investigation will not only enrich and develop the mathematical theory of partial differential equations, but also provide important references for practical problems.
英文关键词: two-phase flows;well-posedness;diffuse interface;;