We propose a model for games in which the players have shared access to a blockchain that allows them to deploy smart contracts to act on their behalf. This changes fundamental game-theoretic assumptions about rationality since a contract can commit a player to act irrationally in specific subgames, making credible otherwise non-credible threats. This is further complicated by considering the interaction between multiple contracts which can reason about each other. This changes the nature of the game in a nontrivial way as choosing which contract to play can itself be considered a move in the game. Our model generalizes known notions of equilibria, with a single contract being equivalent to a Stackelberg equilibrium, and two contracts being equivalent to a reverse Stackelberg equilibrium. We prove a number of bounds on the complexity of computing SPE in such games with smart contracts. We show that computing an SPE is $\textsf{PSPACE}$-hard in the general case. Specifically, in games with $k$ contracts, we show that computing an SPE is $\Sigma_k^\textsf{P}$-hard for games of imperfect information. We show that computing an SPE remains $\textsf{PSPACE}$-hard in games of perfect information if we allow for an unbounded number of contracts. We give an algorithm for computing an SPE in two-contract games of perfect information that runs in time $O(m\ell)$ where $m$ is the size of the game tree and $\ell$ is the number of terminal nodes. Finally, we conjecture the problem to be $\textsf{NP}$-complete for three contracts.


翻译:我们提出一个游戏模式,让球员可以共享进入一个连锁链的共享机会。 这可以让球员使用智能合同代表他们采取行动。 这改变了关于理性的基本游戏理论假设, 因为合同可以让球员在特定的子游戏中采取不合理的行动, 使得其他无法令人相信的威胁变得可信。 考虑多种合同之间的相互作用, 这在一般情况下会以非边际方式改变游戏的性质, 选择哪项合同本身可以被视为游戏中的动作。 我们的模型一般化了已知的equilibria概念, 单项合同相当于Stackelberg平衡, 和两项合同相当于逆向的Stackelberg平衡。 我们证明, 在智能合同中计算SPE的复杂程度是$\P{PSPC} 。 在普通案件中,我们用SPEEE的精确值是一美元。 我们在SPEA中可以计算一个不完善的SPE值。

0
下载
关闭预览

相关内容

软件:实践和经验是一种国际上受尊重的、经过严格审查的工具,用于传播和讨论在软件系统和应用程序中使用新的和既定的技术和工具的实践经验。论文发表的关键标准是它做出了一项新的贡献,从事软件设计和/或实现的其他研究人员和实践者可能从中受益。提交的稿件必须是以前未发表过的原稿,并且不考虑在其他地方发表。该杂志重点是软件的实践和经验。文章中所包含的理论或数学内容有助于证明贡献和理解的严格基础,最终导致更好的实际系统的发展。 官网地址: http://dblp.uni-trier.de/db/journals/spe/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员