In this paper, we consider first-order convergence theory and algorithms for solving a class of non-convex non-concave min-max saddle-point problems, whose objective function is weakly convex in the variables of minimization and weakly concave in the variables of maximization. It has many important applications in machine learning including training Generative Adversarial Nets (GANs). We propose an algorithmic framework motivated by the inexact proximal point method, where the weakly monotone variational inequality (VI) corresponding to the original min-max problem is solved through approximately solving a sequence of strongly monotone VIs constructed by adding a strongly monotone mapping to the original gradient mapping. We prove first-order convergence to a nearly stationary solution of the original min-max problem of the generic algorithmic framework and establish different rates by employing different algorithms for solving each strongly monotone VI. Experiments verify the convergence theory and also demonstrate the effectiveness of the proposed methods on training GANs.


翻译:在本文中,我们考虑了解决一类非convex非concive min-max马鞍点问题的第一阶趋同理论和算法,其客观功能是最小化变数中的微软共振和最大化变数中的微弱共振;在机器学习中有许多重要的应用,包括培训General Adversarial Nets(GANs)等培训;我们提议了一个由不精确的准点方法驱动的算法框架,其中与最初的微积分问题相对应的微单体变异性不平等(VI)通过在原有的梯度绘图中增加强烈的单质绘图,大约解决了构建的强烈单质六六的序列;我们证明,第一阶趋同几乎固定的通用算法框架原有的微积分问题,并通过使用不同的算法解决每个强的单体六。实验验证了趋同理论,并展示了拟议方法在培训GANs上的有效性。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年5月21日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员