Singular value decomposition (SVD) is the mathematical basis of principal component analysis (PCA). Together, SVD and PCA are one of the most widely used mathematical formalism/decomposition in machine learning, data mining, pattern recognition, artificial intelligence, computer vision, signal processing, etc. In recent applications, regularization becomes an increasing trend. In this paper, we present a regularized SVD (RSVD), present an efficient computational algorithm, and provide several theoretical analysis. We show that although RSVD is non-convex, it has a closed-form global optimal solution. Finally, we apply RSVD to the application of recommender system and experimental result show that RSVD outperforms SVD significantly.
翻译:单值分解(SVD)是主要组成部分分析(PCA)的数学基础。 SVD和五氯苯甲醚是机器学习、数据挖掘、模式识别、人工智能、计算机视觉、信号处理等中最广泛使用的数学形式化/分解方法之一。在最近的应用中,正规化成为一种日益增长的趋势。在本文中,我们提出了一个正规化的SVD(RSVD),提出了高效的计算算法,并提供了若干理论分析。我们表明,虽然RSVD不是混凝土,但它有一个封闭式的全球最佳解决方案。最后,我们将RSVD应用于推荐系统的应用,实验结果显示,RSVD明显优于SVD。