Robotic eye-in-hand calibration is the task of determining the rigid 6-DoF pose of the camera with respect to the robot end-effector frame. In this paper, we formulate this task as a non-linear optimization problem and introduce an active vision approach to strategically select the robot pose for maximizing calibration accuracy. Specifically, given an initial collection of measurement sets, our system first computes the calibration parameters and estimates the parameter uncertainties. We then predict the next robot pose from which to collect the next measurement that brings about the maximum information gain (uncertainty reduction) in the calibration parameters. We test our approach on a simulated dataset and validate the results on a real 6-axis robot manipulator. The results demonstrate that our approach can achieve accurate calibrations using many fewer viewpoints than other commonly used baseline calibration methods.
翻译:机器人眼部校准是确定机器人终端效应框架相机的硬质 6-DoF 结构的任务。 在本文中, 我们将此任务描述为一个非线性优化问题, 并引入一种积极的视觉方法来从战略角度选择机器人, 以最大限度地实现校准准确性。 具体地说, 根据初步的测量组集, 我们的系统首先计算校准参数, 并估算参数的不确定性。 然后我们预测下一个机器人会从中收集下一个测量, 从而收集下一个测量, 从而在校准参数中取得最大程度的信息( 不确定性的减少) 。 我们在模拟数据集上测试我们的方法, 并在真实的 6轴机器人操作器上验证结果 。 结果显示, 我们的方法可以使用比其他常用的基线校准方法少得多的视角实现精确校准 。</s>