Accurate, long-term forecasting of human pedestrian trajectories in highly dynamic and interactive scenes is a long-standing challenge. Recent advances in using data-driven approaches have achieved significant improvements in terms of prediction accuracy. However, the lack of group-aware analysis has limited the performance of forecasting models. This is especially apparent in highly populated scenes, where pedestrians are moving in groups and the interactions between groups are extremely complex and dynamic. In this paper, we present Grouptron, a multi-scale dynamic forecasting framework that leverages pedestrian group detection and utilizes individual-level, group-level, and scene-level information for better understanding and representation of the scenes. Our approach employs spatio-temporal clustering algorithms to identify pedestrian groups, creates spatio-temporal graphs at the individual, group, and scene levels. It then uses graph neural networks to encode dynamics at different scales and incorporates encoding across different scales for trajectory prediction. We carried out extensive comparisons and ablation experiments to demonstrate the effectiveness of our approach. Our method achieves a 9.3% decrease in final displacement error (FDE) compared with state-of-the-art methods on ETH/UCY benchmark datasets, and a 16.1% decrease in FDE in more crowded scenes where extensive human group interactions are more frequently present.


翻译:在高度动态和互动的场景中,人类行人轨迹的准确、长期预测是一个长期的挑战。在使用数据驱动方法方面最近取得的进展在预测准确性方面取得了显著的改进。然而,缺乏群体意识分析限制了预测模型的性能。这在人口密集的场景中特别明显,行人以群体方式移动,各群体之间的互动极为复杂和动态。在本文中,我们介绍Grouptron,一个利用行人群体探测和利用个人、群体一级和现场一级信息的多尺度动态预测框架,以更好地了解和展示场景。我们的方法采用时空组合算法来识别行人群体,在个人、群体和场景一级创建时空图,从而在个人、群体和场景一级创建时空图。然后,它使用图形神经网络来解析不同规模的动态,并纳入不同尺度的编码,以显示我们的方法的有效性。我们的方法实现了最终流离失所错误(FDE)的9.3%的减少,而目前FDE1 和FASM的更大规模互动方法则比目前的比例下降。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员