We develop hybrid projection methods for computing solutions to large-scale inverse problems, where the solution represents a sum of different stochastic components. Such scenarios arise in many imaging applications (e.g., anomaly detection in atmospheric emissions tomography) where the reconstructed solution can be represented as a combination of two or more components and each component contains different smoothness or stochastic properties. In a deterministic inversion or inverse modeling framework, these assumptions correspond to different regularization terms for each solution in the sum. Although various prior assumptions can be included in our framework, we focus on the scenario where the solution is a sum of a sparse solution and a smooth solution. For computing solution estimates, we develop hybrid projection methods for solution decomposition that are based on a combined flexible and generalized Golub-Kahan processes. This approach integrates techniques from the generalized Golub-Kahan bidiagonalization and the flexible Krylov methods. The benefits of the proposed methods are that the decomposition of the solution can be done iteratively, and the regularization terms and regularization parameters are adaptively chosen at each iteration. Numerical results from photoacoustic tomography and atmospheric inverse modeling demonstrate the potential for these methods to be used for anomaly detection.
翻译:我们开发了计算大规模反向问题解决方案的混合预测方法,在这种方法中,解决方案代表了不同随机组成部分的总和,这种情景出现在许多成像应用中(例如大气排放透析法中的异常探测),在这些成像应用中,重建的解决方案可以作为两个或两个以上组成部分的组合来代表,而每个组成部分含有不同的平滑或随机特性。在一个确定性反向或反向建模框架中,这些假设与每种解决办法的总和的不同规范化条件相对应。虽然可以将先前的各种假设纳入我们的框架,但我们侧重于解决方案是稀疏溶和光滑解溶方之和的组合的情景。对于计算解决方案的估计,我们开发了解决方案分解的混合预测方法,这些混合预测方法以灵活和通用的Golub-Kahan-Kahan进程为基础。这一方法结合了通用Golub-Kahan Teriagonaliz和灵活的Krylov方法的技术。拟议方法的好处是,解决办法的解析可以迭接地进行,而正规化条件和正规化参数则是在每种变式模型中选择的适应性选择。在光学和大气中,这些变相光学中,这些结果用于用于对大气层的大气探测方法。