We study the problem of learning generalized linear models under adversarial corruptions. We analyze a classical heuristic called the iterative trimmed maximum likelihood estimator which is known to be effective against label corruptions in practice. Under label corruptions, we prove that this simple estimator achieves minimax near-optimal risk on a wide range of generalized linear models, including Gaussian regression, Poisson regression and Binomial regression. Finally, we extend the estimator to the more challenging setting of label and covariate corruptions and demonstrate its robustness and optimality in that setting as well.
翻译:我们研究了在对抗性腐败下学习通用线性模型的问题。我们分析了一种古典的顺理成章的理论,称为迭代的三重可能性最高估测器,据知它实际上能有效对付标签腐败。在标签腐败中,我们证明这个简单的估测器在广泛的通用线性模型(包括高斯回归、普瓦森回归和比诺米亚回归)上实现了微小的近最佳风险。最后,我们把估测器推广到更具有挑战性的标签和共变腐败的设置上,并展示了该设置的稳健性和最佳性。