One of the challenges of quantum computers in the near- and mid- term is the limited number of qubits we can use for computations. Finding methods that achieve useful quantum improvements under size limitations is thus a key question in the field. In this vein, it was recently shown that a hybrid classical-quantum method can help provide polynomial speed-ups to classical divide-and-conquer algorithms, even when only given access to a quantum computer much smaller than the problem itself. In this work, we study the hybrid divide-and-conquer method in the context of tree search algorithms, and extend it by including quantum backtracking, which allows better results than previous Grover-based methods. Further, we provide general criteria for polynomial speed-ups in the tree search context, and provide a number of examples where polynomial speed ups, using arbitrarily smaller quantum computers, can be obtained. We provide conditions for speedups for the well known algorithm of DPLL, and we prove threshold-free speed-ups for the PPSZ algorithm (the core of the fastest exact Boolean satisfiability solver) for well-behaved classes of formulas. We also provide a simple example where speed-ups can be obtained in an algorithm-independent fashion, under certain well-studied complexity-theoretical assumptions. Finally, we briefly discuss the fundamental limitations of hybrid methods in providing speed-ups for larger problems.
翻译:量子计算机在近期和中期内的挑战之一是,我们可以用数量有限的量子计算机进行计算。因此,在规模限制下找到能够实现有用量子改进的方法是该领域的一个关键问题。在这方面,最近显示,混合的古典-量子计算法可以帮助向传统的分数和交错算法提供多式加速超速,即使仅仅允许使用量子计算机,也比问题本身要小得多。在这项工作中,我们研究在树类搜索算法中可以使用的混合分解和交错方法,并通过包括量子回溯跟踪加以扩展,这样可以比以前以 Grover为基础的方法取得更好的结果。此外,我们为树类搜索中的多式加速提供了一般标准,并举了一些例子,说明如何利用任意较小的量子计算机实现多式加速。我们为已知的DPLL的算法提供了加速条件,我们证明PPSZ算法(最快速精确的可交错速度计算法的核心)可以做到无临界速度超速超速,这比以前以Grover为基础的速度计算法更复杂。我们也可以在一定的公式中提供某种快速的解算法,最后提供更精确的精确的精确的解方法。