A nonlinear partial differential equation (PDE) based compartmental model of COVID-19 provides a continuous trace of infection over space and time. Finer resolutions in the spatial discretization, the inclusion of additional model compartments and model stratifications based on clinically relevant categories contribute to an increase in the number of unknowns to the order of millions. We adopt a parallel scalable solver allowing faster solutions for these high fidelity models. The solver combines domain decomposition and algebraic multigrid preconditioners at multiple levels to achieve the desired strong and weak scalability. As a numerical illustration of this general methodology, a five-compartment susceptible-exposed-infected-recovered-deceased (SEIRD) model of COVID-19 is used to demonstrate the scalability and effectiveness of the proposed solver for a large geographical domain (Southern Ontario). It is possible to predict the infections up to three months for a system size of 92 million (using 1780 processes) within 7 hours saving months of computational effort needed for the conventional solvers.
翻译:COVID-19的非线性部分方程式(PDE)基于非线性部分方程式(PDE)基于COVID-19的区际模型(PDE)提供了空间和时间感染的持续痕量。在空间分解中采用更细的分辨率,根据临床相关类别纳入更多的模型区隔和模型分层,有助于增加数百万人的未知数。我们采用了一个平行的可缩放求解器,使这些高忠诚模型的解决方案更快。求解器将域分解和代数多格预设器组合在一起,以达到预期的强弱可伸缩性。作为这一一般方法的一个数字示例,使用了COVID-19的五种组合易发感染-已恢复-已解(SEID)模型,以显示拟议的解析器在大地理区域(南安大略省)的可扩展性和有效性。在常规解答器所需的计算工作节省7小时内,可以预测高达3个月的感染量(使用1,780个进程)。