A two-stage hierarchical Bayesian model is proposed to estimate forest biomass density and total given sparsely sampled LiDAR and georeferenced forest inventory plot measurements. The model is motivated by the United States Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis (FIA) objective to provide biomass estimates for the remote Tanana Inventory Unit (TIU) in interior Alaska. The proposed model yields stratum-level biomass estimates for arbitrarily sized areas of interest. Model-based estimates are compared with the TIU FIA design-based post-stratified estimates. Model-based small area estimates (SAEs) for two experimental forests within the TIU are compared with each forest's design-based estimates generated using a dense network of independent inventory plots. Model parameter estimates and biomass predictions are informed using FIA plot measurements, LiDAR data that is spatially aligned with a subset of the FIA plots, and wall-to-wall remotely sensed data used to define landuse/landcover stratum and percent forest canopy cover. Results support a model-based approach to estimating forest variables when inventory data are sparse or resources limit collection of enough data to achieve desired accuracy and precision using design-based methods.
翻译:为估计森林生物量密度和粗略抽样的LiDAR和地理参照森林清单地块测量,提议了一个二级贝叶斯模型,以估计森林生物量密度和总产量,该模型的动机是美国农业部(USA)森林服务森林清单和分析局(FIA)的目标是为阿拉斯加内地偏远的Tanana盘存股提供生物量估计,拟议的模型产生任意面积大区的区级生物量估计,模型估计数与TIUFAFA设计后批准后估计值比较,以小型面积模型为基础,对TIU内两个试验森林的小型面积估计值与利用密集的独立清单地块网络产生的每个森林设计估计值进行比较,模型参数估计和生物量预测是利用FIA的地块测量数据、空间上与FIA的一组地块相一致的LIDAR数据,以及用于界定土地使用/土地覆盖区块和百分比森林可耕地覆盖率的遥感数据。