项目名称: 基于电子自旋-核自旋耦合的高精度核磁共振磁强计极化与检测方法研究

项目编号: No.61503353

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 自动化技术、计算机技术

项目作者: 万双爱

作者单位: 中国航天科工飞航技术研究院

项目金额: 21万元

中文摘要: 核磁共振磁强计具有高精度、小体积等优点,是磁异常探测的核心传感器之一,对于提高海洋资源勘探、水下目标识别效能具有重要意义。该磁强计的精度主要由核自旋极化率、进动检测灵敏度、核自旋弛豫时间决定。由于核自旋被外层电子包围,难以采用光场、磁场等手段对核自旋系综进行直接高效地作用,传统的高效极化与高灵敏检测方法又会导致核自旋弛豫时间的降低以及额外误差的引入,制约了磁强计精度的提高。该项目针对上述难题,提出基于电子自旋-核自旋耦合结构的核磁共振磁强计,研究电子自旋-核自旋耦合弛豫机理、电子自旋-核自旋高效耦合极化、核自旋进动的非线性磁光旋转检测方法,为我国发展高精度的核磁共振磁强计提供极化与检测操控方法参考。

中文关键词: 磁强计;原子磁强计;核磁共振磁强计;自旋极化;自旋进动检测

英文摘要: Nuclear magnetic resonance magnetometer (NMRM) with high precision and small size, is one of key sensors for magnetic anomaly detection system, which is significant for improving the efficiency of marine resource exploration and target recognition of underwater. The NMRM precision depends on the polarization as well as the precession detection sensitivity of nuclear spin. The nuclear spin is surrounded by the outer electron, it is difficult to directly polarize the nuclear spin by the means of optical and magnetic. Moreover, the traditional polarization and sensitive detection methods will reduce the relaxation time of nuclear spin and extra error, which has become the key obstacle to improve the precision of NMRM. Focusing on this problem, this project proposes a new NMRM based on electron-nuclear coupled spins, investigates the relaxation mechanism of the electron-nuclear coupled spins, develops the high efficiency polarization and high sensitivity precession detection methods based on Nonlinear Magneto Optical Rotation. As a result, this project expects to provide a significant polarization and precession detection manipulation methods reference for developing the high precision NMRM.

英文关键词: magnetometer;atomic magnetometer;nuclear magnetic resonance magnetometer;spin polarization;spin precession detection

成为VIP会员查看完整内容
0

相关内容

《智能制造机器视觉在线检测测试方法》国家标准意见稿
专知会员服务
47+阅读 · 2021年8月29日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
117+阅读 · 2021年4月29日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
42+阅读 · 2021年4月15日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
小目标检测技术研究综述
专知会员服务
114+阅读 · 2020年12月7日
目标检测之殇—小目标检测
极市平台
4+阅读 · 2021年11月3日
基于深度学习的小目标检测方法综述
专知
1+阅读 · 2021年4月29日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
ECCV 2018 | Bi-box行人检测:‘行人遮挡’为几何?
极市平台
13+阅读 · 2018年9月30日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
49+阅读 · 2021年5月9日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
《智能制造机器视觉在线检测测试方法》国家标准意见稿
专知会员服务
47+阅读 · 2021年8月29日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
117+阅读 · 2021年4月29日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
42+阅读 · 2021年4月15日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
小目标检测技术研究综述
专知会员服务
114+阅读 · 2020年12月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员